Coxeter Decompositions of Hyperbolic Tetrahedra
نویسنده
چکیده
In this paper, we classify Coxeter decompositions of hyperbolic tetrahedra, i.e. simplices in the hyperbolic space IH. The paper together with [2] completes the classification of Coxeter decompositions of hyperbolic simplices.
منابع مشابه
Coxeter Decompositions of Bounded Hyperbolic Pyramids and Triangular Prisms
Coxeter decompositions of hyperbolic simplices where studied in math.MG/0212010 and math.MG/0210067. In this paper we use the methods of these works to classify Coxeter decompositions of bounded convex pyramids and triangular prisms in the hyperbolic space IH.
متن کاملCommensurators of Cusped Hyperbolic Manifolds
This paper describes a general algorithm for finding the commensurator of a non-arithmetic hyperbolic manifold with cusps, and for deciding when two such manifolds are commensurable. The method is based on some elementary observations regarding horosphere packings and canonical cell decompositions. For example, we use this to find the commensurators of all non-arithmetic hyperbolic once-punctur...
متن کاملThe Volume Conjecture
6 Hyperbolic Geometry 31 6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 Ideal Tetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.3 Volume of Ideal Hyperbolic Tetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.4 Hyperbolic Manifolds . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملNon-peripheral Ideal Decompositions of Alternating Knots
An ideal triangulation T of a hyperbolic 3-manifold M with one cusp is non-peripheral if no edge of T is homotopic to a curve in the boundary torus of M . For such a triangulation, the gluing and completeness equations can be solved to recover the hyperbolic structure of M . A planar projection of a knot gives four ideal cell decompositions of its complement (minus 2 balls), two of which are id...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008